If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10z^2+21z+8=0
a = 10; b = 21; c = +8;
Δ = b2-4ac
Δ = 212-4·10·8
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-11}{2*10}=\frac{-32}{20} =-1+3/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+11}{2*10}=\frac{-10}{20} =-1/2 $
| 5-x-52=80 | | 10x^2+21+8=0 | | 1-5-r=1+2r | | 4+13x=95 | | 19x-5=109 | | 3(n+8)=18 | | 7x+9+115=180 | | 66x+2,694x-33=69(40x+65) | | 240x+0.25x=180x+0.40x | | x+1.95=2.1 | | n^2+2n=19 | | Q+34/t5=104/5 | | 3.6y=5.4 | | 45x1=45 | | 2/7y+6=30 | | 180=25+x+69 | | 74x1=1 | | 3a^2-11a-24=0 | | 15x=60.2 | | -4(x+11)+5x=93 | | 1.5x+2.2=2.2 | | 97=t+4.5 | | 16a+4=8 | | 10n^2-6n-18=0 | | sX4-16=36 | | 0.3(15)+0.05x=0.20(x+15) | | 3(y-5)+7y=-25 | | 3(x+3)-5x=-5 | | 0.9s-6.3=4.5 | | 25+x+69=180 | | 5(v-5)-3v=-19 | | -15x+(-7.5)=15 |